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On Thick Domain Walls in General Relativity
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ABSTRACT

Planar scalar field configurations in general relativity differ considerably from

those in flat space. We show that static domain walls of finite thickness in curved

space-time do not possess a reflection symmetry. At infinity, the space-time

tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum

(Rindler space-time) on the other. Massive test particles are always accelerated

towards the Minkowski side, i.e. domain walls are attractive on the Taub side,

but repulsive on the Minkowski side-i'_Taub-vacuum cleaner'_). We also prove

that the pressure in all directions is always negative. Finally we briefly comment

on the possibility of infinite, i.e. bigger than horizon size, domain walls in our

universe. All our results are independent of the form of the potential V(_) > 0

of the scalar field _ . _-_
=
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1. Introduction

Domain walls like other topological defects can be produced in a phase tran-

sition in the universe. However, it is well known 1'2 that stable domain walls in

the early universe would soon have dominated the energy density and therefore

were discarded. The renewed interest in domain walls is due to a scenario of

galaxy formation proposed by Hill, Schramm and Fry a "m which these topologi-

cal defects form after recombination and provide the seeds for the clustering of

baryons without destroying the isotropy of the microwave background radiation.

In this model the thickness _ of these walls can be of the order of Mpc's and

is related to the neutrino mass mL, and the GUT-symmetry breaking scale A by

,.0 A/m_ . It has been speculated 4 that the "Great Attractor" might be such a

domain wall.

Numerical simulations of the dynamics of a network of such walls show 5'6

that small closed walls decay and only one infinite wall per horizon survives.

In general, a domain wall is a topologically stable configuration where the

scalar field attains different vacuum expectation values on different sides of the

wall. The gravitational effects of domain walls were studied in the approxima-

tion of infinitely thin wails, i.e. where the energy momentum tensor becomes

proportional to a 8-function. Under the assumption that the metric functions

are reflection (z _ -z) symmetric, no static solutions were found 7's'9 . This lead

to the study of thin s'9 and thick 1°'11 (but still reflection symmmetric) static

domain walls in non-static space-times. However, if the assumption of reflection

symmetry is dropped, infinitely thin, static walls exist 12 . The remarkable result

of these studies was that the gravitational field of these walls is repulsive.

If domain walls exist in the present universe, they could only be detected by

their gravitational effects. We therefore investigate thick, static domain walls in

the framework of General Relativity. Since the form of the potential V(O) is not

known, we analyze the general properties of static planar domain walls for an

arbitrary potential. In spite of their complexity the coupled Einstein-scalar field

equations allow to extract some remarkable new features. The only assumptions

we make are planar symmetry (i.e. with Killing-vectors 0x, Or, xOy - yOx ), a

positive scalar field potential (V(O) > 0) for finite z and a vanishing energy

momentum tensor at infinity Izl _ cx_ .

We will show that static domain wall solutions of the Einstein-equations

are not reflection @_etric. The analysis of Einstein's equations in a suitable

coordinate system reveals that the asymptotic structure of the space-time is in



fact different on the two sidesof the wall. Although the coupled Einstein-scalar
field equations are symmetric with respect to a z _ -z transformation, no

solutions with this symmetry exist (besides the Minkowski vacuum). We show

that the gravitational field of a domain wall always approaches the Minkowski

vacuum on one side of the wall and the Taub vacuum on the other side. The

Minkowski- and Taub vacua are the only two static planar vacuum solutions of the

Einstein equations. Also the equations of motion for test particles are different

on the two sides of the wall: All massive particles are accelerated towards the

Minkowski side. This is compared with a static wall of perfect fluid which is

attractive and admits only bound states for massive test particles. Also, we find

that the pressure perpendicular to the wall is always negative and possesses only

one minimum. This pressure is entirely due to gravitational effects, since for a

wall in Minkowski space-time the pressure is zero everywhere. Finally, we make

some remarks on the effects of infinite domain walls in the cosmological context.

2. Einstein equations

The coupled Einstein- scalar field equations are obtained from the action

/ [1 1]S = d4xv_ _ g"" Or@Ore;- V(@)- _ R , g --Idet(g_,v)[ (2.1)

by variation with respect to the metric g_,, and the scalar field @ . (We use the

units 8zrG -- 1 .) This gives the Einstein-equations

1

Go,, =- R_,v - -_ g_,vR = T_,u

with the Ricci-tensor R_,_ and the energy momentum tensor

1

and the Euler-Lagrange equation for the scalar field

[ ]g-1/20_, v'_g"VOL,_ + --_. = O.

(2.2)

(2.3)

(2.4)

This last equation can also be viewed as a consequence of the Bi.anchi-identity

T,_';v = 0. Since we are interested in static and plane-symmetric configurations



we can take the metric of the form

ds 2 = OA(z) dt 2 _ e2B(z) dz 2 _ e2c('-) (dx 2 + dy 2) . (2.5)

We use the freedom to choose the coordinate system by imposing the condition

2C = B - A . The energy-momentum tensor then reads:

rt t = Zx x
1

= ryY = + _ e-2B ¢ '2 + V(¢) - p

Tz __1 -2B 0,2 V(O) -p
z = 2 e + =

(2.6)

and the Einstein-equations become:

2 ;r .__

= -2BGt t -- e

Gz z = - e-2B

Gy _ = - e-2B

4B"- B '2- 2AtB '-4A" + 3A '2]/4= p

[B'2+ 2A'B' - 3.4'2]/4 = -p

[2B"- B '2- 2A'B' + 2A"+ 3A'2]/4 = p,

(2.7)

where the prime denotes the derivative 0/0: . The scalar field equation (2.4)

simplifies to:

-2B 0" dV(O)
c dO -0. (2.8)

From (2.7) one immediately finds that

A"=-e 2B V(O) (2.9)

A"= B"/3 . (2.10)

Eqs. (2.8) - (2,10) are equivalent to the Einstein-equations (2.7) and are sufficient

to determine the functions A, B and • for a given V(O) .



3. Properties of planar scalar field configurations

The simple form of eqs. (2.8) -(2.10) allows us to draw some interesting con-

clusions about static planar scalar field configurations for an arbitrary potential

V(#,). The properties of thick walls are radically different from those of infinitely

thin walls discussed so far. Our assumptions, besides planar symmetry, are only

that (i) pressure and density vanish for Izl _ and (ii) V(,I,) > 0 for finite z .

The assumption (ii) requires the 'I' field to take a ground state value at I-I oc

3.1 PLANE SYMMETRIC VACUUM SOLUTIONS

Before we analyze the properties of scalar field configurations we shall have

a look at the asymptotic vacuum states that are possible far away from the wall,
9"where the density and pressure vanish. From (-. i ) we find for p, p _ 0

A II _ 0 ,

with the two solutions

(a):
(b).

B" = O , B 12 + 2AIB l - 3A 12=0,

a = A' B' _ const

= A' -B'/3 const

(3.1)

(3.2)

In case (a) the metric (2.5) becomes

ds 2 = e2az (dt 2-dz 9)-(dx 2 +dy 2), (3.3)

where we absorbed the integration constants by a rescaling of the coordinates.

Of course, for a = 0 this gives the Minkowski vacuum. For a _ 0 (3.3) is the

metric of a Rindler space 13 , that is Minkowski space in an accelerated coordinate

system. This can be seen by applying the transformation

i = e _z sinh(at)/a, _ = e az cosh(at)/a ,. (3.4)

so that eq. (3.3) becomes

ds 2= d_ - d_, _ - dx 2 - dy 2. (3.5)

An observer at rest at z = const receives an acceleration along the hyperbola

_2 _ {2 = e2aZ o_2 in Minkowski-space.
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In case (b) the metric (2.5) becomes

ds 2 = e 2_'z dt 2 - e -6_" dz 2 - e -4_: (dx 2 4- dy 2) (3.6)

where we again absorbed the integration constants by a rescaling of the coordi-

nates. Again, for a = 0 the metric reduces to the Minkowski vacuum. For a ¢ 0

after the coordinate transformation ,_ = e-4_z/(4[a[) and a further rescaling

= 24Tgi x, v) one nds

ds2 = _-1/2 (d_2 _ d_2) _ S (dSc2 + d_)2) , (3.7)

that is the Taub-vacuum 14

Now, knowing the possible asymptotic vacuum space-times far away from

the wall, we show that the quite general assumptions stated above, i.e. planar

symmetry, V(_i,) > 0 at finite - and p, p --, 0 for Izl -* oo, are indeed sufficient

to determine the actual vacuum states on both sides of the wall.

3.2 FORM OF THE METRIC COEFFICIENTS

Here we examine the general form of the metric functions A and B . The

relative sign of their derivatives, A p and B _ , determines by eq. (3.2) the nature

of the vacua at z --* :l:oc . The assumption V(_5) > 0 for finite z yields (see eq.

(2.9))
• A"<0 , B"<0 for z finite. (3.8)

Thus, A _ and B' can change their signs at. most once. Since we demand p _ 0

as I_1_ oo and p ¢ 0 at some points (p = 0 would be equivalent to Minkowski

vacuum everywhere by eqs. (2.7)), p nmst have an extremum. This implies that

pt = _BI _,2 e-2B (3.9)

has to change its sign at least once and, because q/2 exp(-2B) > 0 , also B _

changes its sign at least once. On the other hand, since by B" < 0, B r can

change sign at most once. So there exists a single point z0 where B_(zo) = O.

B(z) has a single maximum and must therefore tend to -co for [z[ ---* oo. The

general shape of B(z) is illustrated in Fig.1 . It is also obvious that the sign of

B t must be different for z ---, +ec and for z _ -co:

forz_+c¢" B_<O _ p_>O
(3.10)

forz_-c_: B_>0 ¢* pl_<0

Since the space-time tends to a vacuum as [z[ _ oc , B I becomes constant (see

(3.2) and Fig.2).



Next, wewant to determine the signof A'. Since p(z) and I'(O) are supposed

to vanish for Izl --, _ and B(-) --, -_c the gradient Or(z) must also go to zero

for ]zl---, _. From (2.10) we have

B I = 3A / + q ,

and (2.7) yields then:

q = const. (3.11)

O r2 = 6A _2 + 4qX + _q2 + 2Ve2B (3.12)

The information about the sign of A _ , contained in the term 4qA' of eq. (3.12),

allows one to draw conclusions about the reflection symmetry of solutions and

the asymptotic vacuum spacetimes on the different sides of the wall. This will be

discussed in the following two sections for the case q = 0 and q ¢ 0, respectively.

3.3 No REFLECTION SYMMETRIC SOLUTIONS

We show here that in the case q = 0 of eq. (3.11) there are no solutions

(besides the Minkowski vacuum, A _ = B _ = 0). Only for q = 0 both metric

coefficients, A and B, could be symmetric functions of z. The choice of the

integration constant q = 0 implies that for ]z] --_ cc A _ _ 0 , since we have

assumed • _ --, 0 and V _ 0. Then, on account of (3.11), also B _ has to vanish

at infinity which contradicts the result about the shape of B(-) derived at the

beginning of this section. Since the case q = 0 is not compatible with the imposed

boundary conditions and for q ¢ 0 eq. (3.11) is not invariant under z _ -z , i.e.

at least one metric function cannot be invariant under reflections, we conclude

that reflection symmetric static walls are not admitted by the coupled Einstein

scalar field equations. This is also corroborated by the fact, which we are now

going to prove, that the two vacua at z ---, 4-e¢ are different.

3.4 DIFFERENT VACUA OUTSIDE THE WALL

For the remaining case q # 0 we now analyze the shape of the metric function

A to determine the asymtotic vacuum states on the different sides of the wall.

With V _ 0 and O' ---, 0 at Izl--, eq. (3.12) becomes

1 2
6A '2+4qA'+_q --40 for Iz]---*oo. (3.13)

However, this is only possible if

qA I<O at z_+ec and z---,-oo, (3.14)

since 6A _2+ glq2 is positive. The important point is that qA _ , and therefore also



A 1 , have the same sign at z ---, +oe and z _ -oc . Taking into account A" < 0

(eq. (3.8)), A' cannot change its sign at all and therefore A(z) must have a shape

as depicted in Fig.1 .

We have seen in (3.1), (3.2) that the two possible vacuum solutions are given

by-B' = A I = const (ginkowski, i.e. Rindler) and B' = -3A' = const (Taub), i.e.

the two vacua can be distinguished by the relative sign of the asymptotic values

of A _ and B' . Since we arrived at the conclusion that B _ must have different

signs at z _ +oo and z --* -oc and A _ cannot change sign at all, the vacuum

spacetimes at z _ +ec and at z _ -oe must be different. If q < 0 then, on

account of (3.14) , A' > 0 everywhere and since B' < 0 at z ---* +ec the vacuum

at z _ +ec must be the Taub vacuum and since B' > 0 for z _ -z¢ the space-

time tends to the Minkowski vacuum at z --4 -ec. For q > 0 the Taub space is

at z _ -c¢ and Minkowski space at z ---* +e¢.

To summarize the last sections, we have shown that every planar, static

solution of the coupled Einstein-scalar field equations with a positive potential

and an asymptotically vanishing energy momentum tensor cannot be symmetric

with respect to reflections z ---* -z and tends to different vacuum space-times at

z --* +ee and z _ -e¢ .

3.5 NEGATIVE PRESSURE

In the appendix we give a proof that the pressure p(z) perpendicular to the

wail must be negative and has a single minimum. This is markedly different from

domain walls in flat space-time where this pressure is always zero. The scalar

field equation in flat space is

dV
_2"= -- (in flat space) (3.15)

dO

which has the first integral

"1

2 _'2 - V = const = 0 (in flat space) (3.16)P

By imposing the same boundary conditions for p as above the constant must

be zero. Thus, the pressure perpendicular to a wall in Minkowski space is zero.

This shows that p(z) originates entirely from gravitational effects. Since in curved

space a force is necessary to counterbalance gravity in order to make a wall static,

the pressure in a self gravitating wall cannot vanish. In fact, if p were zero, (2.7)

shows that also p vanishes, i.e. there is no static wall solution with p = 0 in

curved space.



3.6 GEODESIC EQUATIONS

The absence of a reflection symmetry also gives rise to different geodesic mo-

tions of test particles on the two sides of the wall. All previous treatments of the
• 7,8,9,10,11

gravitational effects of domain walls in static and non-static space-times

were based on the assumption of reflection symmetry about the center of the wall.

So repulsive gravitational effects were assumed to occur on both sides• However,

non-reflection symmetric walls will have different gravitational effects on the two

sides. We find that a wall is attractive on the Taub side and repulsive on the

Minkowski side.

The results from the last sections allow us to determine the general features

of the motion of a test particle in the gravitational field of the wall. The geodesic

equations for a test particle moving perpendicular to the wall with position vector

x i' = (t(r),z(r),O,O) (r is an affane parameter along the geodesic) have the

following first integrals (a dot denote differentiation with respect to r) :

i= Ee -2A (3.17)

_2 = e-2B[_2e-2A _ p2] (3.18)

where E is the energy constant associated with the Killing vector Ot and p2 = 1,0

for massive and massless particles, respectively• The local energy E, loc a freely

falling observer measures is (in units of the mass for massive particles)

EIoc = Ee-A (3.19)

The acceleration of the particle measured by an observer that remains at a con-

stant distance from the wall is given by

In order to determine whether a particle is repelled by the wall one has to know

the sign of the acceleration on both sides of the wall. On the side where the space-

time asymptotically tends to the Minkowski vacuum we have A _ = B _ = -q/2.

We choose q > O, so that the Minkowski vacuum is at z _ +_ . Then the

acceleration for z _ +_ is

_,...._2B, e-2B[___2e-2A _p2] (3.21)

1#2 > 0 and B _Since _2 > 0 implies E2e-2A - _ _ --- -q/2 < 0 we conclude that

_?> 0, i.e. the wall is repulsive on the Minkowski side at z _ +_. For a particle



moving in the part of spacewhich tends asymptotically to the Taub vacuum it is
not possibleto derivethe sign of _ in a similar way. However,A(z) is a monotonic

function and }2 >_ 0 implies by eq. (3.18) that massive particles (#2 = 1) can

only move in the region _ _> zr (for q > 0) , where ZT is the single turning point

._2 _ e2A(zr) = 0 i.e. /_zoc ----1 , (3.22)

see Fig.3 . Thus, any massive particle coming from the Minkowski vacuum

and moving towards the wall bounces at z = ZT and is repelled back into the

Minkowski vacuum. This means that any test particle is accelerated towards the

Minkowski side. Massive particles on the Taub side are attracted by the wall. tn

this sense the wall may be viewed as a giant "Taub-vacuum cleaner". For photons

the possible trajectories are quite different: from (3.21) and (3.10) it follows that

massless particles (#2 = 0) moving perpendicular to the wall feel a repulsive force

on both sides of the wall. However, they can penetrate the wall freely without

any turning point. On the other hand, it can be shown that massless particles

moving parallel to the wall are always driven towards the Minkowski side.

In the remainder of this section we briefly discuss the essential difference of the

gravitational field of these scalar field walls and the gravitational field of a planar

static perfect fluid configuration. Taking the metric (2.5) with 2C = (B- A) the

Einstein equations with an energy momentum tensor Tuv = (p + p)uuuv -pg#v

(u_u" = 1) are

(p ÷ 3p) = 2A"e -2B (3.23)

(p - p) =- e-2B(A '' -- B") (3.24)

and the Bianchi identity is

p_ + (p + p)A' = 0 (3.25)

If the fluid satisfies p+3p > 0 then A '_ > 0 and ifp _ oo as Izl ---* _ and p+p > 0

(3.25) implies that A l has to change sign at least once. The equations of motion

for a test particle moving along the z-axis are the same as (3.17), (3.18) and (3.20).

Since A(z) increases monotonically as Iz] ---* oc and has a single minimum, the

condition _2 > 0 implies that every massive particle can only move within a finite

range ZTt <_ z < ZT2 where ZT1, ZT_ are the two solutions of _2 _ e2A(z) ._ O.

Thus, every massive test particle is trapped by a perfect fluid wall in a bound

state and therefore this wall must be attractive. Only photons can escape the

gravitational field since no points with _2 = 0 exist for #2 = 0.

10



4. Infinite walls in the cosmological context

A phase transition in the early universe that allows a scalar field to settle

down in different vacuum expectation values in different regions of the universe

would produce domain walls between these regions. The network of domain walls

will initially have a coherence length of the order of the inverse scalar mass, which

is also the thickness of the walls. Because of their surface tension, the smaller

closed domain walls will gradually shrink and finally decay into scalar bosons;

bigger walls will straighten out. Also, walls can collide, annihilate or merge

together. A numerical simulation of a network of domain walls in an expanding

universe 5'6 , which, however, did not take into account the gravitational effects of

the walls, suggests that only one infinite wall per horizon volume will eventually

remain.

An infinite wall in the cosmological context means a wall of a size larger than

the horizon. The horizon volume is then cut into two halls by the wall. Even a

closed wall, with a curvature radius larger than the horizon, can be treated as an

infinite wall, since the information of the topology of the wall can spread only on

horizon scales.

The assumption of a vanishing energy-momentum tensor at large distance

from the wall is obviously not satisfied in the universe. But even the assumption

of an isotropic perfect fluid far from the wall would, by eqs. (2.7) , lead to

A _ = riB v + const (rl = const) , so that the metric would still have no reflection

symmetry and the space-times on the two sides of the wall would be different! In

any case, one can expect that the above results are an approximation for almost

planar walls and regions where the energy density of the universe is much smaller

than that of the wall.

If there is such an infinite wall between us and the last scattering surface

of the microwave background, it could destroy the isotropy of this background

by deflecting the photons at the wall. On the other hand, the wall would also

influence our motion with respect to the microwave background. Prom the re-

quirement that the combination of both effects is in accord with the measured

isotropy of the microwave background one could derive constraints or indications

on the possible existence of these domain walls in the universe. But also the

wall-induced pertubations in the density and velocity distributions of ordinary

matter could lead to similar effects.

11



5. Conclusions

We have shown that static domain walls in General Relativity possess no

reflection symmetry. This implies some interesting phenomena. The asymptotic

vacua are Minkowski (i.e. Rindler) space-time and Taub space-time on the dif-

ferent sides of the wall. Massive test particles are always accelerated towards the

Minkowski side; that is, particles coming from the Minkowski side experience a

reflection. Massless particles moving perpendicular to the wall are always accel-

erated away from the wall (and never get reflected), but those moving parallel

to the wall are driven towards the Minkowski side. Indications or constraints for

the existence of infinite walls in the universe could be obtained by comparing

their gravitational effect on our local motion and on the microwave background

with the observed isotropy of this background.

ADDED NOTE:

After completing this paper we found an exact solution of eqs. (2.8)-(2.10)

for the potential V(_) = Vo cos2(1-_l(O/f(n)) (0 < n < 1) which confirms and

illustrates the general results obtained in this paper.
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APPENDIX

Here we show that p is negative and has only a single minimum. By eq. (3.9)

pr vanishes only, if either • r = 0 or B t = 0 . The second derivative of p(z) at the

point z0 , defined by B_(zo) = 0 , is

p"(zo) = -B"O'2e >_0 . (A1)

In order to prove that p is negative and has a single minimum which coincides

with z0 we have to discriminate three possible cases for pr to vanish:

B'(zo) = O, Or(zo) # 0 :

Eqs. (3.9) and (A1) show that z0 is a minimum of p(z). At all points z -_ z0

where • _ = 0 (and B _ # 0) . p_ does not Change its sign since we know that

B r changes sign only once. Therefore, these points can only be turning points

of p(z). It follows that p(z) can have only one minimum and since p ---* 0 for

[z[ ---, oc eq. (3.10) implies p(z) < 0 for finite z .

B I-fi0,O r=0forz_:z0 :

Since the sign of p_ cannot change at these points, p can have only a turning

point and no extremum.

Br(z0): 0, O'(z0)= 0 :

In this case pr' ( zo ) = p'" (zo ) = 0 and

p(4)(z0) -- -6B"O"2e -2B >_ 0 (A2)

If O"(z0) # 0, z0 is a minimum of p(z). Again it is the single minimum of p,

because at all other points where • r = 0 , B t and pr do not change sign. The

boundary condition p --* 0 as ]z[ _ oc then implies p(z) < 0 for finite z . If

O"(z0) = 0 , then, on account of (2.8) , dV/dO = 0 at z0. Upon differentiating

(2.8) one can show that if O'(z0) = B'(zo) = O"(z0) = 0 then all higher derivatives

of O(z) must vanish. However, a function whose derivatives are all zero at some

point must be constant. A constant scalar field gives rise only to a vacuum

solution. That is O"(z0) # 0 and p(z) has a minimum.

Thus p is negative and has a single minimum at z0 where Br(zo) = 0 .

13
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FIGURE CAPTIONS

1. General shape of the metric functions A(z) and B(z).

2, General shape of the derivatives A'(z) and B'(z). Note that the asymptotic

values are related according to eq. (3.2).

3. The general shape of the effective potential expA(z) for a massive test

particle, zr is determined by (3.22).
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